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ABSTRACT

This report compares the effectiveness of Landsat Thematic
Mapper ('I'M).and French SPOT Multispectral satellite data as a
supplement to ground Survey data for estimation of corn and
soybean planted area. Ref.rence data from USDA's 1988 June
Agricultural Survey were used in the estimation process and to
check results. The survey data covered a sample of 30 segments
in western Iowa. TM.and SPOT scenes of the region, imaged during
late July of 1988~ were utilized. The ground and satellite data
were processed through USDA's PEOITOR software system. For both
'I'Mand SPOT, each pixel within the sample segments was
classified to'a specific ground cover based on previQusly
computed spectral signatures. Since the true cover for each
pixel was known from the ground data, classification accuracy
could be assessed. Statistical criteria used to evaluate sensor
performance included percentage of pixels correctly classified,
commission error, and regression determination coefficient. For
both crops of interest, the 'I'Mdata produced more accurate
acreage estimates than the SPOT data. The entire 'I'Mscene was
classified in order to generate region level estimates of crop
area. These estimates were compared with the corresponding
direct expansion estimates computed from survey data alone.
Battese-Fullerestimates of crop acreage on a county basis were
computed and compared with the official county estimates.
Key Words: Landsat, 'I'M,SPOT, pixel, classification, regression
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INTRODUCTION
The National Agricultural statistics service (NASS) used the
Landsat Multispectral Scanner (MSS) for the Agency's operational
crop area estimation program from 1980 to 1987 [1]. Since this
sensor would not be on future Landsat satellites and the current
ones were not expected to stay in operation for much longer,
NASS decided in 1987 to pursue a research program. The objective
of the research program was to compare the utility of two
available sensors that could replace MSS. The two sensors are
the Landsat Thematic Mapper (TM) and the French SPOT
multispectral scanner. Estimation accuracy and cost efficiency
were the main criteria for comparing the sensors. This report
evaluates the quality of TM and SPOT based estimates of corn and
soybean planted acreage, using ground and satellite data from a
region in western Iowa.

A pixel (picture element) is the basic unit of a remotely sensed
image. The pixel is represented by a d-component vector of
reflectance measurements, where d is the number of channels or
spectral bands. The spatial resolution of a sensor is the length
of the sensor's pixel. The Landsat TM sensor features seven
channels with a spatial resolution of 30 meters, while the SPOT
sensor has three channels and a resolution of 20 meters. By
comparison, the Landsat MSS sensor has four spectral bands with
a spatial resolution of 80 meters.

In the NASS operational remote sensing program, MSS data were
processed and combined with ground reference data from the area
portion of the June Agricultural Survey (JAS) to produce crop
acreage estimates. The PEDITOR software system processed the
data. All pixels within a satellite scene were classified to a
specific crop or ground cover. The system used linear regression
to relate JAS reported acres for a given crop to the classified
pixel counts for that crop, and to generate the Landsat based
acreage estimates.

This study uses the statistical efficiency of the regression
estimator as the key criterion for comparing the performance of
the TM and SPOT sensors. However, other remote sensing studies
often use percent correct classification and commission errors.
In order to produce good results, the regression estimator
requires accurate ground reference data.

The TM data used for this study were applied to a full scene
classification to obtain large scale regression estimates of
corn and soybean planted acreage in the region of interest. The
large scale acreage estimates were compared with the
corresponding JAS direct expansion estimates that use only
ground data. In addition, the Battese-Fuller method was used to
compute TM based county level estimates of acreage for the two
crops. The study compared the estimates for each county with the
official 1988 county estimates issued by the Iowa State
Statistical Office.
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RESEARCH AREA
The research site for this study was a nine county region in
western Iowa, shown in Figure 1. Corn and soybeans are the
predominant crops in this region. Ground reference data from the
area frame portion of the 1988 JAS were used. The survey data
covered a statistical sample of 30 land segments.
Figure 1: Map of Iowa Showing Research Site

1 Audubon
2 Calhoun
3 Carroll

4 3 5 4 Crawford
5 Greene
6 Guthrie
7 Ida

8 Sac

9 Shelby

The 1988 Iowa area sampling frame consisted of eleven land use
strata. Nine of the strata comprised a geographic subdivision of
all agricultural land in the state, while the other two covered
agri-urban and residential-commercial areas. Stratum 14 included
the agricultural land in the research area. Of the 30 segments
used for the study, 28 came from stratum 14 and the other two
from stratum 30 (agri-urban). There were no sampled segments
from stratum 40 (residential-commercial). Some prominent covers
in the region other than corn and soybeans were pasture, oats,
and alfalfa.
The region was covered by one TM scene and four SPOT scenes. The
overpass dates were July 25, 1988 for the TM scene and July 31,
1988 for the SPOT scenes. Cloud cover was insignificant for all
of the scenes. Four sample segments were completely within the
TM scene but not within any of the SPOT scenes. Two other
segments were completely within one of the SPOT scenes but not
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the TM scene. These six segments, which included one from
stratum 30 (agri-urban), were not used for the sensor
comparison. The remaining agri-urban segment contained no corn
area and very little soybean area according to the ground
reference data. This segment was included in the training
process (supervised clustering) but excluded from classification
and statistical analysis. The remaining 23 segments, all in
stratum 14, were classified into categories. Use of this
categorized data with the ground data permitted the
establishment of a regression relationship between the ground
and satellite data. Thus the small scale classifications for TM
and SPOT used the same ground area. All available spectral bands
for each sensor were utilized.

PROCESSING
All data processing associated with remote sensing crop area
estimation is performed using PEDITOR, a special purpose
software system developed at NASS [2). PEDITOR is written mainly
in PASCAL and maintained on a MicroVax 3500 computer at NASS,
with many modules that also run on IBM compatible personal
computers. At the time this study was done, satellite scenes
were stored on tapes at the CRAY X-MP supercomputer facility
operated by Boeing corporation in Seattle, washington. Portions
of those scenes could be retrieved and transferred to the
MicroVax in the form of a multiwindow file. The CRAY
supercomputer was also used for large scale classification,
estimation, and aggregation.
The required processing steps (up to Classification) are
discussed in Appendix A. Following classification, the options
available to the user are small scale estimation, large scale
estimation, and county estimation. Appendices B, C, and D
describe these procedures. For the current study, large scale
estimation was done only for TM. Small scale estimation was
sufficient for the sensor comparison because measures of
estimation accuracy could be obtained from processing at the
sample level.
The ground reference data for this study required both internal
and external editing before further processing. Internal editing
detected and corrected errors within the ground reference data.
External editing detected discrepancies between the ground data
and registered satellite imagery that required corrective
action. Some fields were labelled as bad and removed from the
training data set. Fields having large discrepancies between
field and planted size, field and harvested size, or planted and
harvested size fell into this category. Fields for which the
reported (survey) acreage differed too much from the digitized
acreage were also labelled as bad.
In selecting TM or SPOT pixels for training, all covers
containing fewer than 5 percent of the total number of pixels
were combined into one category, labelled 'other'. The covers
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lumped together in the 'other' category were farmstead, alfalfa,
oats, idle crop, waste, woods, crop pasture, and water. This
resulted in a total of four covers for the subsequent
classification process: corn, soybeans, permanent pasture, and
other.

Small scale classification was done in stratum 14 only, using
both equal and unequal prior probabilities for the four covers
(see Appendix A). with unequal priors, the probability for each
cover was defined to be the percentage of total pixels in the
appropriate packed file (TM or SPOT) belonging to that cover.
The packed files used to calculate the priors were the original
versions that included the outlier pixels not used for training.

SMALL SCALE ESTIMATION RESULTS
Small scale estimation refers to estimates and performance
measures obtained from small scale (segment only)
classification. Regression is used to relate the classified
pixel counts within segments to the corresponding ground
reference data from the JAS. The regression methodology and
performance measures used to compare TM and SPOT are described
in Appendix B.

Small scale estimation was done only in stratum 14, using 23
segments as discussed in section 2. Separate estimates for each
sensor were computed using the classification results obtained
with unequal priors and equal priors. Table 1 shows, for both
corn and soybeans, the values of the regression determination
coefficient (R2), relative efficiency, percent correct, and
commission error for TM and SPOT. The performance measures used
about the same ground area as did the training samples, so the
results for both sensors probably display a higher level of
accuracy than would be obtained from classifying other areas.
Training pixel counts, prior probabilities, number of categories
for each cover, and confusion matrices showing the number of
pixels from each cover classified to each cover can be found in
Appendix E, Tables A1 and A2.

Table 1 shows that for both corn and soybeans, higher values of
R2 occurred for TM than for SPOT. The discrepancies ranged from
0.051 for the soybeans/equal priors case to 0.142 for the
corn/unequal priors case. In addition, percent correct was
higher for TM than for SPOT in every case, while the commission
error was lower. The table also shows that R2 was usually higher
with unequal priors than equal priors, with the SPOT results for
soybeans being the exception.

For both TM and SPOT, the R2 values for soybeans were higher
than the corresponding ones for corn, while the commission
errors for soybeans tended to be lower than those for corn.
Conversely, corn showed higher values of percent correct than
did soybeans. This illustrates that the three metrics are
measuring different aspects of estimator efficiency.
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Table 1: TM and SPOT Efficiency Comparison

Description
Corn R
Soybeans R2

Corn ReI. Efficiency
Soybeans ReI. Efficiency

Corn Percent Correct
Soybeans Percent Correct

Corn commission Error
Soybeans Commission Error

TM spot
Priors Priors

Unequal Equal Unequal Equal
.928 .825 .786 .727
.943 .913 .853 .862

12.65 5.21 4.25 3.33
15.90 10.44 6.18 6.61
85.67 88.23 84.27 81.47
84.13 77.78 74.20 72.35
19.83 30.08 29.08 33.62
20.01 24.27 25.93 31. 38

The paired sample t-test for equality of means of the absolute
residuals provides a formal method for assessing whether or not
the TM sensor produced a significantly better regression fit
than the SPOT sensor. A previous study on winter wheat used this
test for the same purpose [3]. The test was performed for the
'with priors' case for each crop. The hypotheses are as follows:

HO: J.LTM = J.LSPOT

H1: J.LTM < J.LSPOT

where J.LTM and J.LSPOT are the means of the absolute residual
distributions for TM and SPOT. The formula for the test
statistic t* is given in Appendix B. Assuming normality of the
data, t* has a t-distribution with 22 degrees of freedom under
HO·

*The computed values of t were 2.182 for corn and 1.985 for
soybeans. The null hypothesis of no significant difference can
be rejected at the 2.5 percent level for corn and at the 5
percent level for soybeans.

LARGE SCALE ESTIMATION RESULTS
A large scale classification was performed on the TM data over
the nine county region. Each pixel within the TM scene was
classified to a specific cover. The classification program used
the maximum likelihood method with the same discriminant
functions as for small scale classification. Once the
classification was complete, large scale regression crop acreage
estimates were computed. Appendix C gives formulas for direct
expansion, proration, and regression estimates as well as their
sample variances.

The two analysis districts comprising the study area were
labelled AD1 and ADDE. District AD1 contained all area covered
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by the TM scene, and ADDE all other area. stratum 14 was
divided into two subsets, corresponding to AD1 (regression) and
ADDE (proration). Regression was not performed in stratum 30
since it contained only two sample segments. stratum 40 was not
needed as it contained no segments in the region. The regression
coefficients computed previously for small scale estimation were
used again. They were determined based on the 23 segments in
stratum 14 covered by both TM and SPOT imagery. To provide a
valid comparison between the estimators, the three segments from
analysis district AD1 in stratum 14 not used in the regression
were also not used in the direct expansion estimates.
Table 2 gives the large scale estimation results for corn and
soybeans. For comparison purposes, state office estimates of
corn and soybean acreage for the region are also shown. These
were computed by summing the official 1988 county estimates for
the nine counties comprising the region (see section 6). The
official county estimates were issued by the Iowa State
statistical Office (SSO). Percent error values for the overall
direct expansion and regression estimates were computed using
the state office figures to represent "truth". Table A3 of
Appendix E shows the sample and population data used to compute
the regression estimates in stratum 14.

Table 2: Large Scale Acreage Estimates

state Office Estimate
Direct Expansion Estimate
Regression Estimate

Direct Expansion Std. Dev.
Regression Std. Dev.

Direct Expansion c.v. (%)
Regression C.V. (%)
Direct Expansion Percent Error
Regression Percent Error

Corn
1,147,000
1,246,925
1,097,440

70,884.5
20,398.1

5.68
1. 86

8.71
4.32

Soybeans
958,300
885,666
881,523

93,189.0
33,478.8

10.52
3.80

7.58
8.01

Table 2 shows that use of the regression estimator causes a
significant reduction in overall variance over the direct
expansion estimator for both crops. This was previously shown
for the regression subset via the relative efficiency figures in
Table 1. TM data reduced the overall coefficient of variation
(C.v.) from 5.68 to 1.86 for corn and from 10.52 to 3.8 for
soybeans. The percent error from the state office estimate was
much lower with regression than direct expansion for corn, but
was higher for soybeans. This was most likely due to the large
difference between the sample mean acreages for soybeans in the
AD1 and ADDE subsets of stratum 14, which caused the proration
estimate to be too low.
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COUNTY ESTIMATION RESULTS
Estimation of crop acreage at the county level is a topic of
great interest to NASS. County estimates based on list frame
control data and supplemental surveys are published
periodically. The major obstacle to obtaining good county
estimates from JAS survey data is the fact that a given county
usually contains very few sample segments.

Current NASS county estimation research focuses on using
additional available information such as total farm acreage and
the previous year's county estimates [4J. TM data represents
another possible supplementary data source. The potential for
improved estimation accuracy with TM is based on the fact that
with adequate coverage, all or most of the area within a county
can be classified.

Several county estimation methods utilizing satellite data have
been investigated by NASS [5J. Of these, the Battese-Fuller
family of estimators [6,7J gives the best performance. Appendix
o provides a description of Battese-Fuller estimation, as well
as proration estimation for counties.

TM based estimates of corn and soybean acreage were computed for
all nine counties in the study area. The computations used the
large scale classification discussed in Section 5, with the same
subdivision of the region into stratum/analysis district
combinations. Battese-Fuller estiMation was applied within the
regression subset of stratum 14. Three counties (Calhoun,
Crawford, and Ida) were not completely within the TM scene.
Table A4 shows the number of frame units and sample segments in
each county, broken down by stratum. Proration was used within
stratum 14 for the parts of counties outside the scene, and in
stratum 30 for all nine counties.

Table 3 gives the computed (TM based) county estimates by
stratum and estimation method, and the official county estimates
issued by the Iowa SSO. Table 4 shows the estimated standard
deviations and coefficients of variation of the computed
estimates, and the percent error between the computed and
official estimates.

The tables show that the computed county estimates for corn were
more efficient overall than those for soybeans. For eight of the
nine counties, the C.V. for corn was less than 3 percent. No
county had a C.V. of less than 3 percent for soybeans. The
percent error ranged from 0.4 to 16.4 for corn, and from 2.2 to
29.6 for soybeans. For each crop, the computed acreage estimate
was lower than the official estimate in seven of the nine
counties.

Ida County showed much higher percent error values than the
other counties. This was because a large portion of that county
was outside the TM scene. The proration component of the
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estimate, based on only two sample segments in stratum 14, was
much too low for each crop. Table A5 in Appendix E gives the
county estimates by stratum and estimation method.

The superior results for corn agree with the large scale
estimation results presented earlier. Further investigation is
needed to evaluate more fully the ability of TM data to improve
county crop area estimation.

Table 3: County Estimates
Soybeans

County
Audubon
Calhoun
Carroll
Crawford
Greene
Guthrie
Ida
Sac
Shelby
Total

Official
100,000
133,000
141,000
147,000
125,000

98,000
112,000
136,000
155,000

1,147,000

Corn
Computed

89,051
131,864
140,453
150,062
119,345

94,515
93,675

137,569
140,906

1,097,440

Official
70,700

150,000
117,000
106,000
143,000

77,500
75,200

124,000
94,900

958,300

Computed
72,254

141,447
108,656

98,861
118,179

86,223
52,972

112,788
90,143

881,523

Table 4: Efficiency of County Estimates

County
Audubon
Calhoun
Carroll
Crawford
Greene
Guthrie
Ida
Sac
Shelby

Corn
std. Dev. % C.V.

2,267.8 2.5
2,423.4 1.8
2,519.2 1.8
3,203.9 2.1
2,809.8 2.4
4,148.9 4.4
1,050.3 1.1
2,616.9 1.9
2,533.4 1.8

% Error
10.9

0.9
0.4
2.1
4.5
3.6

16.4
1.2
9.1

soybeans
Std. Dev. % c.v.

3,268.2 4.5
4,474.3 3.2
5,261.2 4.8

10,596.1 10.7
4,196.5 3.6
5,579.1 6.5

10,219.8 19.3
4,042.7 3.6
4,260.4 4.7

% Error
2.2
5.7
7.1
6.7

17.4
11. 3
29.6

9.0
5.0

CONCLUSIONS
The sensor comparison has provided strong evidence that TM data
is preferable to SPOT data for estimating corn and soybean
planted area. The use of prior cover probabilities appears to
improve classification efficiency.

The large scale estimation results further illustrate the
ability of TM data to improve survey based estimates. Overall,
the corn estimates were more improved than those for soybeans.
The county estimation results show the potential of TM in this
important application.

In addition to the results presented in this report, the TM and
SPOT systems have recently been evaluated for estimation of
wheat, dry beans, rice, and cotton in several regions of the
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country [3,8,9]. In all cases, TM produced more accurate
estimates than SPOT.

The superior ground resolution of SPOT means that it may be the
most useful sensor for land use mapping. However, by providing
more spectral information, TM has become the preferred sensor
for crop area estimation.

9



REFERENCES
[1] J.D. Allen and G.A. Hanuschak, "The Remote Sensing

Applications Program of the National Agricultural
Statistics Service: 1980-1987," U.S. Department of
Agriculture, NASS Staff Report No. SRB-88-08, Aug. 1988.

[2] G. Angelici, R. Slye, M. Ozga, and P. Ritter, "PEDITOR - A
Portable Image Processing System," in Proceedinqs of the
IGARSS '86 Symposium, Zurich, Switzerland, Sept. 8-11,
1986, pp. 265-269.

[3] J.M. Harris, S.B. Winings, and M.S. Saffell, "Remote
Sensor Comparison for Crop Area Estimation," in Proceedinqs
of the IGARSS '89 Symposium, Vancouver, Canada, July 10-14,
1989, pp. 1860-1863.

[4] E.A. Stasny, P.K. Goel, and D.J. Rumsey, "County Estimates
of Wheat Production," Ohio State University Technical
Report, in preparation.

[5] G. Walker and R. Sigman, "The Use of LANDSAT for County
Estimates of Crop Areas - Evaluation of the HUddleston-Ray
and Battese-Fuller Estimators," U.S. Department of
Agriculture, SRS Staff Report No. AGES 820909, Sept. 1982.

[6] W.A. Fuller and G.E. Battese, "Transformations for
Estimation of Linear Models with Nested-Error Structure,"
Journal of the American Statistical Association, vol. 68,
no. 343, pp. 626-632, Sept. 1973.

[7] G.E. Battese, R.M. Harter, and W.A. Fuller, "An Error-
Components Model for Prediction of County Crop Areas using
Survey and Satellite Data," Journal of the American
statistical Association, vol. 83, no. 401, pp. 28-36, March
1988.

[8] J.D. Allen, "Remote Sensor Comparison for Crop Area
Estimation Using Multitemporal Data," U.S. Department of
Agriculture, NASS Staff Report No. SRB-90-03, March 1990.

[9] C.L. stup and J.D. Allen, "The Construction of a Dry Bean
Area Sampling Frame in Michigan," U.S. Department of
Agriculture, NASS Staff Report No. SRB-90-06, May 1990.

[10] G.H. Ball and D.J. Hall, "A Clustering Technique for
Summarizing Multivariate Data," Behavioral Science, vol.
12, pp. 153-155, March 1967.

[11] P.H. Swain, "Pattern Recognition: A Basis for Remote
Sensing Data Analysis," Information Note 111572 (1973),
Laboratory for Applications of Remote Sensing, Purdue
University, West Lafayette, Indiana.

10



[12J M.E. Bellow and M. Ozga, "Evaluation of Clustering
Techniques for Crop Area Estimation using Remotely
Sensed Data," in preparation.

[13J R.K. Lennington and M.E. Rassbach, "CLASSY - An Adaptive
Maximum Likelihood Clustering Algorithm," in Proceedinqs
of the Ninth Annual Meetinq of the Classification Society
(North American Branch), Clemson, South Carolina, May
21-23, 1978.

[14) Johnson, R.A. and Wichern, D.W., Applied Multivariate
Statistical Analvsis, Englewood Cliffs, New Jersey:
Prentice Hall, 1988, ch. 11, pp. 501-513.

11



APPENDIX A: REMOTE SENSING PROCESSING STEPS
During the June Agricultural Survey, enumerators draw off all
field boundaries within segments onto aerial photographs. These
boundaries are later transferred to digital form. At the state
offices, questionnaire data from the survey are key-entered,
edited, and transmitted to NASS Headquarters. The Remote Sensing
section's cartographic unit registers the JAS photographs and
satellite scenes to a map base in latitude/longitude
coordinates. This allows the remote sensing analyst to identify
and manipulate pixels corresponding in location to the JAS
fields. The analyst then selects pixels to be used for training
and creates a packed file containing only those pixels. A
boundary pixel is one that "touches" the segment border or the
within segment border between two fields. Since reflectance
values of boundary pixels are assumed to represent a mixture of
covers on either side of the boundary, these pixels are
generally excluded from the packed file. The analyst can apply a
clipping algorithm based on principal components to remove
outlier pixels, i.e. those whose multidimensional reflectance
vectors are too isolated from the others.

The next step is the training process, which performs supervised
clustering on the sampled satellite data. Pixels in the packed
file belonging to a specific cover are clustered to produce
signatures. signatures are discriminant functions defined by
mean vectors and covariance matrices describing the multivariate
normal distributions assumed to model reflectance patterns. The
collection of these statistics for all covers in a satellite
scene constitutes the scene classifier. The clustering program
used in this study implements a modified version of the Isodata
algorithm of Ball and Hall [10]. It involves repeatedly
assigning pixels to moving cluster centers based on the
Euclidean distances between pixel reflectance vectors and the
centers. The algorithm periodically merges cluster pairs whose
Swain-Fu distance is sufficiently small. Swain-Fu distance is a
measure of intercluster separation that takes into account the
covariance structure of the clusters [11]. If a cluster displays
excessive heterogeneity as measured by the largest eigenvalue of
its sample covariance matrix, then it can be split into two
subclusters [12]. The number of clusters in the final output of
the program is generally not known in advance. An alternate
clustering program, known as CLASSY, is also available for this
task [12,13].

Once clustering has been performed for each cover, another
PEDITOR program allows the analyst to combine the clusters into
one large file containing all required statistical information.
options exist for editing this statistics file via deletion of
clusters based on certain criteria. However, recent improvements
to the clustering programs may make this process less important.
The final statistics file contains the defining information for
all remaining categories (clusters). Each category is assigned a
label corresponding to a cover from the ground data. Unequal
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prior probabilities can be assigned to the categories based upon
available information on relative acreage of the different
covers in the region of interest. This information may come from
a previous survey, the current ground reference data, or other
sources. Each cover is assigned a prior probability reflecting
its approximate percentage of the land area. If unequal priors
are not assigned, then the prior probability for each cover is
assumed to be the reciprocal of the number of covers (equal
priors). In either case, the prior probability for each category
within a given cover is computed by multiplying the prior
probability for the cover by the ratio of the number of pixels
belonging to that category to the total number of pixels in all
categories associated with the cover. The intent of using
unequal priors is to improve the accuracy of the subsequent
classification process.
After a final statistics file has been created, classification
can begin. The classification process uses a maximum likelihood
rule that assumes multivariate normality [14]. For each pixel to
be classified, quadratic discriminant scores are computed for
all categories. The scores for a pixel having reflectance
vector z are given by:

diQ(z) = -0.5 in(det(Si)] - O.5(z-zi)TSi-i(z-zi) + in Pi ' i=i, ... ,c

where:
c = number of categories
Zi mean reflectance vector for category i
Si sample covariance matrix for category i
Pi = prior probability for category i

Small scale classification assigns covers only to those pixels
identified with the JAS sample segments, while large scale
classification operates on all pixels within a TM or SPOT scene.
Each pixel is assigned to the category for which its
discriminant score is highest. For each segment, the pixel
counts are summed over categories within covers to obtain the
number of pixels classified to each cover. By summing these
counts over segments, the analyst can determine the overall
number of pixels classified to each cover.
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APPENDIX B: SMALL SCALE ESTIMATION
within the sample segments for a given stratum, the estimation
procedure uses regression methodology to relate classified pixel
counts to the ground reference data. Counts of pixels within
each sample segment classified to a specific crop are regressed
against the corresponding crop acreage values from the JAS
enumeration. A separate first order model is applied for each
stratum where regression is used. Assume that for a given
stratum h, segments j=l, ... ,nh are used for regression. The
model is expressed as:

Yhj = ~hO + ~hlXhj , j=l, ... ,nh
where:

= reported acres of crop in segment j of stratum h

= number of pixels classified to crop in segment j of
stratum h

~hO' ~hl = regression coefficients for stratum h
The regression parameters are estimated using the standard least
squares formulas:

where:

This study uses several performance measures to evaluate
classification and estimation accuracy. The most important to
NASS is the regression determination coefficient:

Rh2 is the square of the correlation coefficient between the
independent and dependent variables. It measures the goodness of
fit of the regression equation. Closely related is relative
efficiency (R.E.), a measure of the effectiveness of satellite
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data in improving upon the JAS estimates. The relative
efficiency is the ratio of the variance of the direct expansion
(JAS) estimate to the variance of the regression (satellite
based) estimate. Equivalently, R.E. is the factor by which the
JAS sample size would have to be increased in order to produce a
direct expansion estimate with the same precision as the
regression estimate. For a single stratum h, the relative
efficiency can be computed directly from the determination
coefficient:

Two other measures, percent correct and commission error, do not
require the regression data for their computation. Percent
correct is the percent of pixels reported for a specific crop
that were classified to that crop. Commission error is the
percent of those pixels classified to a crop that actually
belong to a different cover according to the ground data.
Percent correct reflects a classifier's ability to identify
correctly pixels belonging to a crop of interest, while
commission error measures its ability to avoid labelling to the
crop of interest pixels belonging to other covers.

The following is a description of the paired sample t-test used
in section 4. For each segment j in stratum h, let ej (TM)and
ej (SPoT)denote the regression residuals for TM and SPOT. The
pairwise differences of the absolute residuals are:

Dj = lej(SPOTlI- lej(TM)I,j=l, ...,nh

The hypotheses given in Section 4 can be written as:

where:

is the mean of the distribution of the Dj'S.

The test statistic is:

where:

s 2
D

Assuming that the absolute residuals are normally distributed,
t* has a t-distribution with nh-1 degrees of freedom under HO'
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APPENDIX C: LARGE SCALE ESTIMATION
Let h=l, •.. ,L denote the land use strata represented in a given
region. The direct expansion estimator of the total acreage Y
for a crop of interest in the region is based on ground survey
data only. It is given by:

where:
Nh = number of frame units in stratum h

nh = number of sample segments in stratum h

Yhj = reported acreage of crop in segment j of stratum h

An estimator for the variance of YDE is:

If satellite data are used for estimation, then each stratum
represented in the region of interest can be further subdivided
by analysis district. The analyst usually defines the analysis
districts based on the extent of available cloud-free satellite
imagery for the region. A separate estimate of crop acreage can
be made for each stratum/analysis district combination (subset),
using regression where feasible and proration elsewhere. For a
regression estimator to be feasible, a subset must be covered by
satellite data and contain a sufficient number of segments.

Suppose regression is to be performed in a subset A of stratum
p, containing NA frame units and nA segments. For convenience,
assume that frame units 1, ... ,NA and segments 1, ... ,nA of
stratum p are the ones contained in A. The mean number of plxels
per frame unit and pixels per segment classified to the crop of
interest are:
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where:

Xpi = number of pixels classified to crop in frame unit i
of stratum p

Xpj = number of pixels classified to crop in segment j of
stratum p

The regression estimator of the total crop acreage in A is:

where:

The estimated variance of this estimator is:

v (YpA (reg) )

where RA2 is the regression determination coefficient for A (see
Appendix B for formula).

Proration is used to obtain estimates for subsets where
regression cannot be done. For a subset B of stratum p
containing NB frame units and nb segments, a proration total
acreage estimate is given by:

where YB is the sample mean acreage in B.

A stratum level estimate of crop acreage is computed by summing
the appropriate subset estimates (regression and proration)
within the stratum. The various stratum level estimates are
summed to obtain a region level acreage estimate.
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APPENDIX D: COUNTY ESTIMATION
The Battese-Fuller model for county estimation can be applied
within a stratum/analysis district combination (subset) where
classification and regression have been performed. The analyst
computes Battese-Fuller estimates of crop acreage for all
counties and subcounties within the subset. For those counties
and subcounties within the region of interest but outside of
usable satellite coverage, proration can be used to obtain
estimates.

Assume that a given stratum p has been divided into subsets A
and B, where A has usable satellite coverage and B does not. Of
course, one subset or the other could be the entire stratum. The
Battese-Fuller model assumes that, for a subset where regression
is performed for a crop of interest, segments grouped by county
have the same slope relationship as the analysis district but
require a different intercept. For the sample segments in A, the
following relation is assumed to hold:

= fio + filXij + vi + eij, i=l, ... ,e; j=l, ... ,nAi
where:

= number of sample segments in subset A portion of
county i

Yij

x· .1)

reported acres of crop in segment j of county i

number of pixels classified to crop in segment j
of county i

The error terms vi and eij are assumed to be independent and
normally distributed, with mean 0 and variances av2 and ae2,respectively. The covariance structure of the summed error terms
Uij is then:

cov(uij,Ukr) 0, if it=k
av 2 if i=k, jfr
a 2+a 2 if i=k, j=rv e

The parameter av2 is both a within county covariance and a
between county component of the variance of any residual, while
ae2 is the within county variance component. The county mean
residuals are given by:

u' = y. -bo-b1X'1. 1. 1.

where:
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bO' b1 = estimated regression coefficients (from small
scale estimation)

For a county or subcounty, the unadjusted estimator of total
crop acreage is:

where:

x·1 mean number of pixels per frame unit classified to
crop in county i

NAi = number of frame units in subset A portion of county i

Different values of 6i generate different Battese-Fuller
estimates. If 6i = 0, then the estimate lies on the analysis
district regression line. It can be shown that the mean square
error of the estimator for a given county is minimized by using:

6i* = nAiov2j(nAiov2+oe2)
If the variance components 0v2 and 0e2 are not known, then they
can be estimated to approximate 6i* using the above formula. The
unbiased estimators given by Fuller and Battese [6] were used to
obtain the estimates presented in Section 6. These require that
a county or subcounty contain at least two sample segments. For
counties and subcounties containing fewer than two segments,
estimates were obtained by using 6i = o.
The unadjusted estimates of county totals generally do not sum
to the corresponding analysis district totals. In order to get
agreement, adjustment terms are added to the estimates. The
formula for the resulting adjusted Battese-Fuller estimator is:

cy. (adj) = y. (BF) - (NA'jNA)'"6 .u.
1 1 1.f .• J J.J=l

where NA is the number of frame units in A. The adjusted
estimates thus generated will sum to the appropriate analysis
district totals. A method for estimating the variance of these
estimators is given in [5J.
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As mentioned earlier, proration can be used to obtain acreage
estimates for counties or subcounties where usable satellite
coverage is not available. These areas often contain very few
segments if any, so the mean acreage over all of subset B is
used to compute the proration estimates. The formula is:

where:
NBi = number of frame units in subset B portion of county i

YB = mean reported crop acreage for subset B
For a county that includes more than one stratum, estimates are
generated for each stratum and summed to obtain an overall
county acreage estimate.
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TM (unequal
From:
Corn
Soybeans
Permanent Pasture
Other
Total

SPOT (unequal
From:
Corn
Soybeans
Permanent Pasture
Other
Total

APPENDIX E: ADDITIONAL TABLES

Table Ai: Training Pixel Counts, Number of Categories, and Prior
Probabilities For Classification

TM
Number of Number of Prior

Cover Training Pixels categories Probability
Corn 20,665 16 .441
Soybeans 15,093 12 .321
Permanent Pasture 3,171 9 .067
Other 8,080 5 .171

SPOT
Number of Number of Prior

Cover Traininq Pixels Cateqories Probability
Corn 45,335 24 .431
Soybeans 33,467 23 .317
Permanent Pasture 7,317 12 .069
Other 19,308 13 .183

Table A2: Small Scale Classification Summary

priors) -------------Pixels Classified To:-----------
Corn Soybeans P. Pasture Other Total

25,155 1,600 440 2,166 29,361
1,634 18,533 349 1,514 22,030

929 398 2,774 1,369 5,470
3,660 2,639 1,825 9,397 17,521

31,378 23,170 5,388 14,446 74,382

priors) -----------pixels Classified To:-----------
Corn Soybeans P. Pasture Other Total

50,014 4,008 1,403 3,926 59,351
7,994 33,034 773 2,719 44,520
2,404 1,224 3,213 4,231 11,072

10,109 6,331 4,197 14,551 35,188
70,521 44,597 9,586 25,427 150,131

TM (equal priors) ---------------pixels Classified To:----------
From: Corn Soybeans P. Pasture Other Total
Corn 25,906 1,637 1,135 683 29,361
Soybeans 3,768 17,135 737 390 22,030
Permanent Pasture 1,330 501 3,355 284 5,470
Other 6,046 3,353 4,255 3,867 17,521
Total 37,050 22,626 9,482 5,224 74,382

SPOT (equal priors) -----------------pixels Classified To:-------
From: Corn Soybeans P. Pasture other Total
Corn 48,353 5,563 3,458 1,977 59,351
Soybeans 8,504 32,209 1,748 2,059 44,520
Perm. Pasture 2,887 1,604 5,159 1,422 11,072
Other 13,101 7,559 8,335 6,193 35,188
Total 72,845 46,935 18,700 11,651 150,131
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Table A3: TM Regression Data

Sample Mean Pixels
Population Mean pixels

Sample Mean Acreage
Regression Mean Acreage

Slope Coefficient

Corn
1,364.26
1,202.8

252.06
219.4

0.2023

Soybeans
1,007.39

996.13

185.58
183.4

0.1933

Table A4: Number of Frame Units and Segments for Counties

stratum 14 stratum 30 stratum 40
County F.U. 's Segs. F.U. 's Segs. F.U. 's Seqs.
Audubon 436 3 19 0 8 0
Calhoun 562 3 22 0 0 0
Carroll 566 1 39 0 0 0
Crawford 709 6 50 0 15 0
Greene 566 4 23 0 8 0
Guthrie 586 2 34 0 15 0
Ida 432 2 20 0 0 0
Sac 573 4 44 1 7 0
Shelby 579 3 31 1 14 0
Total 5,009 28 282 2 67 0
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Table A5: Breakdown of County Estimates by strata and
Estimation Method

Corn
stratum 14 stratum 30

County Battese-Fuller Proration Proration Total
Audubon 88,712 339.2 89,051
Calhoun 129,466 2,005 392.7 131,864
Carroll 139,757 696.2 140,453
Crawford 130,923 18,246 892.5 150,062
Greene 118,934 410.6 119,345
Guthrie 93,908 606.9 94,515
Ida 43,995 49,323 357.0 93,675
Sac 136,784 785.4 137,569
Shelby 140,353 553.4 140,906
Total 1,022,832 69,574 5,033.9 1,097,440

Soybeans
stratum 14 stratum 30

County Battese-Fuller Proration Proration Total
Audubon 72,192 61.8 72,254
Calhoun 140,639 737 71.5 141,447
Carroll 108,529 126.8 108,656
Crawford 91,992 6,707 162.5 98,861
Greene 118,104 74.8 118,179
Guthrie 86,112 110.5 86,223
Ida 34,777 18,130 65.0 52,972
Sac 112,645 143.0 112,788
Shelby 90,042 101.0 90,143
Total 855,032 25,574 916.9 881,523
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